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Abstract

A model of choice under purely subjective uncertainty, Piecewise-Additive

Choquet Expected (PACE) utility, is introduced. PACE utility allows for opti-

mism and pessimism simultaneously, but represents a minimal departure from

expected utility. It can be seen as a continuous version of NEO-expected util-

ity (Chateauneuf et al, 2007) and, as such, is especially suited for applications

with rich state spaces. The main theorem provides a preference foundation for

PACE utility in the Savage framework of purely subjective uncertainty with

an arbitrary outcome set.

Keywords: Optimism, Pessimism, Inverse-S, Choquet Expected Utility,
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1 Introduction

Economic life is rich with uncertainties, most of which look nothing like probabilistic

risk. In the subjective expected utility theory of Savage (1954), the decision maker’s
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beliefs about uncertainty can be quantified probabilistically. All uncertainty reduces

to risk. This theory also excludes probabilistic risk attitudes towards this subjective

risk. Attitudes such as optimism and pessimism, for which there is considerable

empirical support. This paper studies a simple modification of expected utility to

allow for optimism and pessimism.

Cohen (1992) argued that the most important departures from expected utility can be

explained by the security and potential factors. These are the worst and best possible

outcomes of a decision (Lopes, 1987). Axiomatic models have been developed by

Gilboa (1988), Jaffray (1988), Cohen (1992), Essid (1997), Chateauneuf et al. (2007),

and Schmidt and Zimper (2007). The NEO-expected utility (NEO-EU) model of

Chateauneuf et al. (2007) evaluates choices using the formula:

γ(worst possible utility) + (1− γ − δ)(expected utility) + δ(best possible utility).

NEO-EU is a special case of Choquet expected utility (Gilboa, 1987; Schmeidler, 1989;

Wakker, 1989) with a Non-Extremal-Outcome additive (NEO-additive) capacity. A

NEO-additive capacity is a transformation of a probability measure that is linear

for non-extreme probabilities, and departs from expected utility if and only if it is

discontinuous at zero or one. As such, it retains subjective expected utility’s prob-

abilistic sophistication property (Machina and Schmeidler, 1992) whilst allowing for

nonexpected utility attitudes. Wakker (2001, 2005) gave model-free, behavioural

definitions of pessimism and optimism using an uncertainty analogue of the com-

mon consequence effect (Allais, 1953).1 According to these definitions, a NEO-EU

maximiser, with γ and δ strictly positive, responds to her probabilistic beliefs by

exhibiting both pessimism and optimism simultaneously; a condition called ambiva-

lence or inverse-S behaviour. Ambivalence is the most prevalent uncertainty attitude

observed in experiments (Wakker, 2010: 203-243, 290-292).

NEO-EU has been applied extensively (Abdellaoui et al. 2010; Dominiak et al. 2012;

1Event optimism and event pessimism (Wakker, 2005:114) are relevant for the framework of this
paper.
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Dominiak and Lefort, 2013; Ford et al. 2013; Eichberger et al. 2012; Eichberger and

Kelsey, 2014; Ludwig and Zimper, 2014; Romm, 2014; Teitelbaum, 2007; Zimper,

2012). Its tractability stems from both: the probabilistic sophistication property,

and the simple way such probabilities are used in the evaluation. Naively applied,

it is not compatible with the ambiguity aversion examples of Ellsberg (1961). It has

been argued, however, that source dependence of uncertainty attitudes is appropri-

ate for explaining Ellsberg’s examples (Heath and Tversky, 1991; Fox and Tversky,

1995; Chow and Sarin, 2001; Wakker, 2001; Abdellaoui et al. 2011). For example, a

British investor may respond more optimistically to his beliefs about the UK market

than his beliefs about foreign markets, even if beliefs are probabilistic in both cases.

By allowing for source dependence of uncertainty attitudes, probabilistic sophistica-

tion can be derived within each source of uncertainty, without requiring it to hold

across each source (Chew and Sagi, 2008). Allowing parameters of decision models

to be source-dependent adds further layers of difficulty for empirical applications.

NEO-expected utility’s simple form, however, makes such an approach tractable, as

demonstrated by Abdellaoui et al. (2011).

Chateauneuf et al. (2007) gave a preference foundation for NEO-EU in a purely

subjective, Savage-style framework. In particular, using simple acts that map an

arbitrary state space to a connected and separable outcome set. By deriving a con-

tinuous, cardinal utility on this rich outcome space, the subjective mixture techniques

of Ghirardato et al. (2003) could be employed to give elegant preference axioms. In

certain economic applications, most notably when outcomes are monetary, assuming

rich topological structure on the outcome set is appropriate. In other applications,

it is not natural to assume such a structure. For example, when the outcomes are:

health outcomes, environmental outcomes, durable goods, and so on.

In this paper, the original Savage framework with an arbitrary outcome set is consid-

ered. The state space is at least countably infinite. There are several problems with

NEO-EU in this framework. Because the probability transformation can be discon-

tinuous, the axiomatic foundations are complicated. For risk, which is a special case
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of the Savage framework, Webb and Zank (2011) provided a preference foundation

for NEO-expected utility. Complicated trade-off axioms, consistent optimism and

consistent pessimism, were used to measure and ensure consistency of the discon-

tinuities, and additional structural assumptions were necessary to derive cardinal

utility and unique parameters. A similar approach in the purely subjective setting

would be no less complex. For arbitrary outcome sets, the NEO-EU parameters need

not be uniquely determined (Webb and Zank, 2011, 710, Example 8). For applica-

tions based on such a framework, it may be difficult to use NEO-EU to generate

behavioural predictions related to comparative optimism or pessimism. Futhermore,

applications of NEO-EU to frameworks with infinite states are problematic. Discon-

tinuities in the evaluation formula mean even simple applications are vulnerable to

problems such as empty best responses, leading to nonexistence of equilibria.2

To resolve both of the problems above, a continuous version of NEO-EU is developed

in this paper. We start with NEO-EU on a finite state space, where the above men-

tioned problems do not arise, and consider the simplest extension to infinite states

that has a continuous probability transformation function. The resulting theory is

called Piecewise Additive Choquet Expected (PACE) utility. It will be shown that

PACE utility admits a simple axiomatisation in the Savage framework and can be

applied in cases where NEO-EU fails. If NEO-EU is the smallest departure from

expected utility to allow inverse-S behaviour, then PACE utility is the smallest con-

tinuous departure from expected utility to allow inverse-S behaviour.

The remainder of the paper is structured as follows: Section 2 presents the theoretical

background of this paper; Section 3 considers the problem of extending NEO-additive

capacities to infinite state spaces and introduces PACE utility; and Section 4 studies

the preference foundations in the Savage framework, with the paper’s main theorem

delivering an axiomatic characterisation of those preferences that admit PACE utility

representations.

2Finite games with mixed strategies, for example, are affected by both of these problems. Allow-
ing players to mix strategies using any probability in the [0, 1] interval means considering preferences
over a finite outcome set with a continuum of states.
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2 Preliminaries

This section outlines the framework for choice under uncertainty and models for

ambiguity. Let S a set of states and E be a σ-algebra of events. We allow for the

case where E is the power set of S . Some richness will later be imposed on S via a

solvability condition, which will imply that S contains infinitely many states.3 Let

X be a set of outcomes. The set of outcomes can be finite or infinite. States and

outcomes are the only primitives; from these all other definitions are derived.

An act is a function f : S →X that is measurable with respect to E . It is assumed

that acts are simple, that is, they take only finitely many values. Acts will also be

written f = [A1, f2; . . . ;An, fn], denoting the act with outcome fi if the state belongs

to event Ai. Acts are the objects of choice. By choosing act f , the decision maker

receives outcome f(s) if state s obtains. The act results in outcome x if the state

belongs to f−1(x) ∈ E . The set of acts is A . An act f is constant if f(s) = x for all

s ∈ S (we will write f = x). An act may be defined by its subacts. For f, g ∈ A

and A ∈ E , fAg := {h ∈ A : s ∈ A⇒ h(s) = f(s), s /∈ A⇒ h(s) = g(s)}. An event

A ∈ E is null if fAh ∼ gAh for all f, g, h ∈ A , otherwise it is non-null.

A set function ν : E → R is normalised if ν(∅) = 0 and ν(S ) = 1. It is monotonic

if, for all A,B ∈ E , A ⊆ B implies ν(A) 6 ν(B). It is additive if, for all disjoint

A,B ∈ E , ν(A∪B) = ν(A)+ν(B). A capacity is a real-valued set function ν : E → R
that is normalised and monotonic. A capacity ν : E → [0, 1] is convex-valued if for

all α ∈ [0, 1] there exists A ∈ E such that ν(A) = α. A probability measure is

an additive capacity. A capacity ν : E → [0, 1] is a probability transformation if

there is a strictly increasing function φ : [0, 1] → [0, 1] and a probability measure

p : E → [0, 1] such that ν = φ ◦ p.

The decision maker exists only to maximise a preference relation < defined over A .

A utility function U over acts A is a real-valued function that represents preferences

3Our assumptions allow for an uncountably infinite S , but do not imply uncountability of S .
See observations 3 and 4 of Wakker (1993).
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such that f < g if and only if U(f) > U(g). Preferences < over acts A conform to

subjective expected utility if they are represented by:

E(p, u)(f) =
∑
x∈X

p(f−1(x))u(x)

where p : E → [0, 1] is a probability measure and u : X → R is a utility function

for outcomes. Additivity of the probability measure ensures that, for all x ∈X , the

following holds:

p(f−1(x)) = p
( ⋃
y<x

f−1(y)
)
− p
( ⋃
y�x

f−1(y)
)
.

The subjective expected utility formula can therefore be written as:

E(p, u)(f) =
∑
x∈X

[
p
( ⋃
y<x

f−1(y)
)
− p
( ⋃
y�x

f−1(y)
)]
u(x).

This exercise helps one clearly distinguish between subjective expected utility and the

following model, Choquet expected utility (Schmeidler, 1989; Wakker, 1989), in which

the probability measure p in the above expression is replaced with ν, a (possibly)

nonadditive capacity. Preferences< over acts A conform to Choquet expected utility

if they are represented by:

E(ν, u)(f) =
∑
x∈X

[
ν
( ⋃
y<x

f−1(y)
)
− ν
( ⋃
y�x

f−1(y)
)]
u(x)

where ν : E → [0, 1] is a capacity and u : X → R is a utility function for outcomes.

Notice that we use the shorthand E(ν, u)(f) for the Choquet expected utility of act

f ∈ A using capacity ν and utility for outcomes u.

Choquet expected utility allows for non-neutral attitudes to ambiguity. A capacity

ν : E → [0, 1] is convex if ν(A ∪ B) − ν(B) is non-decreasing as B ⊇-increases.

Similarly, a capacity is concave if ν(A∪B)−ν(B) is non-increasing as B ⊇-increases.
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Wakker (2001, 2005) gave behavioural definitions of pessimism and optimism and

characterised such behaviour in context of Choquet expected utility. Under Wakker’s

definitions, a Choquet expected utility maximiser is pessimistic if and only if the

capacity is convex, and optimistic if and only if the capacity is concave. The most

prevalent attitude found in experiments is ambivalence; a composition of pessimistic

and optimistic responses to uncertainty. Because such capacities are initially concave

and then convex, ambivalence is often called inverse-S behaviour.

A special case of Choquet expected utility, presented and axiomatised by Chateauneuf,

Eichberger and Grant (2007), is the NEO-additive capacities. These are discussed

further in the next section. The Choquet expected utility of an act f with respect

to a NEO-additive capacity can be shown to be a convex combination of subjective

expected utility, the utility of the act’s best outcome, u(f ∗), and utility of the act’s

worst outcome, u(f∗):

NEO(f) = γu(f∗) + (1− γ − δ)E(p, u)(f) + δu(f ∗)

with γ, δ > 0 and γ + δ < 1. Here, γ + δ dictates the extent of the departure

from expected utility; the degree of ambiguity. It is apparent from the representation

that two acts with identical (or indifferent) best and worst outcomes will be ranked

according to their expected utilities. Choquet expected utility using NEO-additive

capacities is sometimes called NEO-expected utility (NEO-EU).

3 PACE Utility

In this section, the problem of extending NEO-additive capacities to Savage’s infinite

state space is addressed. Consider a NEO-additive capacity ω defined over a finite

set of states S ⊂ S , S = {s1, . . . , sn}. Let ES = {∅, A1, . . . , Ai, . . . ,S } denote the

set of 2n events, formed by all subsets of S. Suppose, for the sake of presentational

simplicity, that all non-empty events in ES occur with positive probability. It is
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known that such NEO-additive capacities have the following form:

ω : ES → [0, 1],

∅ 7→ 0,

A1 7→ (1− γ − δ)p(A1) + δ,
...

Ai 7→ (1− γ − δ)p(Ai) + δ,
...

S 7→ 1,

where γ, δ > 0 and γ + δ < 1.

The NEO-expected utility model is tractable for economic applications assuming

finitely many states. Consider the following example, which will be used throughout

this section:

Example 1 (A simple insurance model with finite states): An agent with

monetary wealth w faces a loss of l with probability (1 − p). Full insurance is

available at premium z, which is actuarially fair, w − z = pw + (1− p)(w − l). The

agent chooses the probability q that she receives full insurance.4 Suppose there are

finitely many options: 0 = q1 < · · · < qn−1 < qn = 1. The problem is, choose q to

make the lottery (q, w− z; (1− q)p, w; (1− q)(1− p), w− l) as preferable as possible.

Suppose the agent is a CEU maximiser with a strictly increasing and strictly concave

utility for money u and probability transformation ω = φ ◦ p. If φ is the identity

(expected utility), then u(w−z) > pu(w)+(1−p)u(w− l) := e, and full insurance is

strictly preferred to no insurance. Maximising qu(w− z) + (1− q)e yields q = qn = 1

as the unique solution. If φ is NEO-additive then, for q ∈ (0, 1), her utility is given

by γu(w− l)+(1−γ−δ)[qu(w−z)+(1−q)e]+δu(w), which is strictly increasing in

4This could be done by rearranging her portfolio in some unmodelled way, or could be a delib-
erate randomisation / mixed strategy. This approach is not standard, but serves to highlight the
differences between the models under consideration.
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q. It is possible, however, that q = 1 is not optimal. Utility for q ∈ (0, 1) is bounded

below by γu(w − l) + (1 − γ − δ)e + δu(w) which is greater than u(w − z) for δ

sufficiently close to one. In that case, when the agent has a high degree of optimism,

optimality occurs where q = qn−1. �

An extension of ω to the infinite state space S , is a capacity ν : E → [0, 1] that

coincides with ω wherever ω is defined, ν|ES
= ω. One extension of a NEO-additive

capacity to consider is the probability transformation such that, for all A ∈ E :

ν(A) =


0 if p(A) = 0,

(1− γ − δ)p(A) + δ if 0 < p(A) < 1,

1 if p(A) = 1,

with γ, δ > 0 and γ + δ < 1. That is, ν = φ ◦ p with the transformation φ that is

strictly increasing everywhere, linear for all probabilities between zero and one, but

possibly discontinuous at zero and/or at one. The probability transformation above

is certainly the most obvious extension of a NEO-additive capacity to infinite states.

Indeed, we call such φ a NEO-additive transformation function. There are, however,

some problems with the NEO-expected utility model that results. In particular, the

discontinuity present in this transformation function presents difficulties for even

simple applications. In the following example there is a continuum (a compact and

connected set) of states, which is typical of many economic applications:

Example 2 (A simple insurance model with a continuum of states): Con-

sider the model of example above, except the problem now involves choosing q ∈
[0, 1]. If φ is the identity, maximising qu(w − z) + (1 − q)e yields q = 1 as the

unique solution. If φ is continuous, the problem has at least one solution. If φ is

NEO-additive then, utility is strictly increasing for q ∈ (0, 1). If δ sufficiently close

to one, q = 1 is not optimal. In that case there is no well-defined solution to the

agent’s problem. �

These issues do not arise for probability transformations that are continuous. There-
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fore, we now seek the simplest extension of a NEO-additive capacity that has a

continuous transformation function. Recall that the NEO-additive transformation

function above linearly transforms all non-extreme probabilities:

A 7→ (1− γ − δ)p(A) + δ if 0 < p(A) < 1.

Because of this, a NEO-additive transformation function φ is continuous if and only

if it is the identity. Consider the following, minor weakenening of the above require-

ment. Let κ ∈ [1
2
, 1] and consider a capacity ν = φ ◦ p that satisfies:

A 7→ (1− γ − δ)p(A) + δ if 1− κ < p(A) < κ.

By taking κ close to one, this capacity is empirically indistinguishable from a NEO-

additive capacity. Under this weaker requirement, however, continuity of φ can

be retained. To do so, we must specify φ on [0, 1 − κ] and [κ, 1]. The simplest

assumption, and therefore most in keeping with the NEO-EU spirit, is that φ is also

strictly increasing and linear on these intervals. The only capacity to achieve all of

this is the capacity ν such that, for all A ∈ E :

ν(A) =


(1− γ − δκ

1−κ)p(A) if p(A) 6 1− κ
(1− γ − δ)p(A) + δ if 1− κ 6 p(A) 6 κ

1−[(1−γ−δ)κ+δ]
1−κ p(A) + (1−γ−δ)κ+δ−κ

1−κ if κ 6 p(A)

with p : E → [0, 1] a probability measure, κ ∈ [1
2
, 1], κ 6 1−γ

1−γ−δ and κ 6 1−δ
1−γ−δ and

γ+ δ < 1. That is, ν = φ◦p with the transformation φ being continuous and strictly

increasing everywhere, and linear on [0, 1 − κ], [1 − κ, κ] and [κ, 1]. We call such

capacities piecewise-additive. Notice that γ, δ > 0 is not required, hence departures

from additivity can, but need not, be of the inverse-S variety.

Definition 3 (Piecewise Additive Choquet Expected (PACE) Utility): PACE

utility holds if preferences are represented by PACE(·) = E(ν, u)(·); Choquet ex-
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pected utility with a piecewise-additive capacity.

The PACE utility model can be thought of as “expected utility with kinks”, hence the

κ. In applications, it can be easier to deal with “kinks” than to deal with “jumps”.

In the insurance example developed above, the decision maker’s best response will

always be non-empty if φ is continuous. The problem encountered with NEO-EU in

Example 2 cannot arise under PACE utility. Also, PACE utility remains tractable

enough to obtain a closed-form solution:

Example 4 (A simple insurance model with a continuum of states): Sup-

pose, in the example above, that the agent chooses q ∈ [0, 1] and her capacity is

piecewise-additive. Utility in this case varies continuously with q ∈ [0, 1], hence the

problem has a well-defined solution. It is possible for the solution to differ from the

expected utility case. To see this, let κ > p, and let δ be close to one. Then, utility

increases with q on [0, κ−p
1−p ] and decreases with q on [κ−p

1−p , 1]. Optimality occurs where

q = κ−p
1−p . At this q, the probability of getting at least w − z is κ, and the agent is

more sensitive to the unlikely, best outcome w. This agent prefers full insurance to

no insurance, but most prefers to gamble on being insured. �

A NEO-EU maximiser stratifies events into “impossible”, “uncertain” and “certain”,

being probability zero, probability in (0, 1), and probability one respectively, and be-

haves as an expected utility maximiser within each class, but not across the classes.

PACE utility is based on a similar trichotomy, buts allows the classes to be subjective.

Events are now stratified into “unlikely”, “moderate” and “likely”, corresponding to

probability “low enough”, probability “not too low or too high”, and probability

“high enough” respectively. To operationalise this idea, we used a personal pa-

rameter, κ ∈ [1
2
, 1], such that “unlikely”, “moderate” and “likely” correspond to

probability not greater than 1−κ, in [1−κ, κ], and not less than κ, respectively. For

example, if κ = 2/3, then events occurring with probability less than 1/3 are dubbed

“unlikely” and events occurring with probability 2/3 or greater are dubbed “likely”.5

5Parry et al (2007: 27), for example, used such a stratification (with the same numbers) to
quantify claims about climate change. “It is likely that we will see increases in hurricane intensity
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PACE utility reduces to expected utility within the unlikely, moderate, and likely

classes of events. It permits departures from expected utility when comparing events

from different classes.

The main theorem of this paper, Theorem 4.1, presents a preference foundation

for PACE utility under purely subjective uncertainty. The axiomatic foundations

of Choquet expected utility with NEO-additive capacities are complicated in the

rich state space, arbitrary outcome set framework (Webb and Zank, 2011). PACE

utility will be derived here, however, from a simple weakening of expected utility’s

sure-thing principle.

4 A Preference Foundation

Here we recall the axioms for subjective expected utility. We assume there are at

least three outcomes x, y, z ∈X such that x � y � z.

Axiom 1 (Ordering): Preferences < over acts A are a weak order.

Axiom 2 (Monotonicity): For acts f, g ∈ A , f(s) < g(s) for all s ∈ S implies

f < g.

An Archimedean axiom is required. Here, a rank-dependent axiom is used. A simpler

axiom could be used at this point. But rank-dependence is required later. The benefit

of using a slightly more complicated Archimedean axiom is that only one such axiom

will be used throughout the paper. For an act f and event A, the event B dominates

A under f if, for all s̃ ∈ B and s ∈ A, f(s̃) < f(s). The rank of an event A

under f , denoted R(A, f), is the largest event that dominates A under f . Hence,

f(s̃) < f(s) holds for all s̃ ∈ R(A, f) and s ∈ A holds, and also f(s̃) 4 f(s) holds

for all s̃ /∈ R(A, f) and s ∈ A because R(A, f) is the ⊇-maximal dominating event.

For a simple act, f = [A1, f1; . . . ;An, fn] we may label the outcomes of f so that

f1 ≺ · · · ≺ fn. Then, the rank of an event Ai under f is given by R(Ai, f) = ∪nj=iAj.

during the 21st century,” and so on.
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Axiom 3 (Archimedeanity): If S = A1, A2, . . . , is a sequence of non-null events

such that:

xA1f � xA1g and xAif ∼ xAi+1g

with R(Ai, xAif) = R(Ai, xAig), for all i = 1, 2, . . . , then S is finite.

The following condition, solvability, relates to the structure of E , so is separated

from the preference conditions above. Solvability holds if, for all acts f, g, h ∈ A

with f � g � h there is an event A such that g ∼ fAh.

Let B denote the set of binary acts, acts taking at most two values. Given x ∈ X ,

A ∈ E and f ∈ B, the act xAf takes at most three values. The following axiom

concerns consistency of a likelihood order revealed using such acts:

Axiom 4 (Comparative Likelihood Consistency): For all f, g, f̃ , g̃ ∈ B, all

A,B ∈ E , x, y, x̃, ỹ ∈X with x ≺ y and x̃ ≺ ỹ, the implication:

xAf ∼ xBg, x̃Af̃ ∼ x̃B g̃, & yAf < yBg ⇒ ỹAf̃ < ỹB g̃,

holds if R(A, j) and R(B, k) are constant, where j = xAf, x̃Af̃ , yAf, ỹAf̃ and k =

xBg, x̃B g̃, yBg, ỹB g̃.

Axiom 4 implies Savage’s axiom P4.6 Axiom 4 is the well-known P2* axiom of

Gilboa (1987), restricted to ranked, three-outcome acts.7 Abdellaoui and Wakker

(2005) provides an extensive treatment of such axioms. Define an order � over

events, written A �L B and read, “A is, subjectively, more likely than B,” whenever

xAy � xBy for some (for all, by axiom 4) x, y ∈ X with x � y. Definition 2.1 of

Abdellaoui and Wakker (2005) referred to the same condition as revealed more likely

in a basic sense. Define ≺L, <L, 4L, and ∼L in the usual way. It can be shown that

<L is a well-defined weak-order over E .

Subjective expected utility preferences and PACE utility preferences both satisfy

6Observation 2.4.1 of Gilboa (1987). Proof: Take f = g = x and f̃ = g̃ = x̃.
7Gilboa considered P2* a replacement for P2, and so, having noted that P4 was implied, dropped

P4 without replacement from the axiom set.
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axioms 1-4. The following axiom, the sure-thing principle, when combined with

axioms 1-4, characterises subjective expected utility:

Axiom 5 (The Sure-Thing Principle): For all events A ∈ E and acts f, f̃ , g, h ∈
A , the following implication holds: fAg < fAh ⇒ f̃Ag < f̃Ah.

The sure-thing principle is will be suitably modified to account for the type of uncer-

tainty attitudes permitted under PACE utility. It is useful to first consider the how

PACE utility compares with NEO-EU. Under NEO-EU, a decision maker will con-

form to expected utility when comparing acts with common best and worst outcomes.

Indeed, even if acts do not have common best and worst outcomes, a sure-thing prin-

ciple holds whenever common outcomes are changed in a way that leaves best and

worst outcomes unaffected. For an act f ∈ A , let b(f) and w(f) denote the ranks

of the best and worst outcomes of f , respectively. Of course, w(f) ∼L S . Then,

NEO-EU necessarily satisfies the following condition:

Definition 5 (The NEO-Sure-Thing Principle): For all events A ∈ E and acts

f, f̃ , g, h ∈ A , the implication:

fAg < fAh ⇒ f̃Ag < f̃Ah

holds if w(j) �L R(A, j) �L b(j), for all j = fAg, fAh, f̃Ag, f̃Ah. The NEO-sure-

thing principle is necessary but, when combined with axioms 1-4, it is not sufficient

for NEO-EU. See example 10 of Webb and Zank (2011:711). To pin down NEO-EU,

Webb and Zank (2011) employed further axioms, consistent optimism and consistent

pessimism. The derivation of PACE utility, however, will require only a weakening

of the sure-thing principle.

Consider a PACE utility representation, and let K be an event with p(K) = κ. The

key properties of PACE utility will be sure-thing principles, the above implication,

that hold whenever:

1. Events are ranked as likely: R(A, j) <L K for all j.
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2. Events are ranked as unlikely: K{ <L R(A, j) for all j.

3. Events are ranked as moderate: K <L R(A, j) <L K{ for all j.

In each case above, j = fAg, fAh, f̃Ag, f̃Ah. Sure-thing principles based on the above

conditions are necessary for PACE utility. They are not, however, falsifiable axioms

because they assume a priori knowledge of an event K with the required properties.

A preference axiom, based on falsifiable conditions, is now developed that will imply

both the existence of such a K and the corresponding behaviour within in each class

of events. This axiom will be called the piecewise-sure-thing principle. Before stating

the piecewise-sure-thing principle, it is necessary to formulate various local versions

of the sure-thing principle. For a given event, A ∈ E , we define upper, lower, outer

and inner sure-thing principles that hold “at A”.

Definition 6 (Upper Sure-Thing Principle at A): For A ∈ E , the implication:

fBg < fBh ⇒ f̃Bg < f̃Bh

holds if R(B, j) <L A, for all j = fBg, fBh, f̃Bg, f̃Bh.

The upper sure-thing principle at A implies the sure-thing principle holds for out-

comes ranked likelier than A. This is a simple and testable condition. Conforming to

the standard sure-thing principle is often seen as normatively desirable. One might

appeal to a weaker criterion such as this, when violations of the sure-thing principle

are permitted. The upper sure-thing principle at K necessarily holds under PACE

utility.

Definition 7 (Lower Sure-Thing Principle at A): For A ∈ E , the implication:

fBg < fBh ⇒ f̃Bg < f̃Bh

holds if A <L R(B, j), for all j = fBg, fBh, f̃Bg, f̃Bh.

The lower sure-thing principle at A implies the sure-thing principle holds for out-
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comes ranked less likely than A. This seems to carry the same normative content as

the upper-sure thing principle. Under PACE utility, events are considered unlikely

only if they are no more likely than K{. Then, the lower sure-thing principle at

K{ necessarily holds under PACE utility. Consider an event A, with A likelier than

its complement A{. Given their apparently equivalent normative status, if one con-

forms to the upper sure-thing principle at A, then conforming to the lower sure-thing

principle at A{ is reasonable. We call this the outer sure-thing principle:

Definition 8 (Outer Sure-Thing Principle at A): The upper sure-thing principle

at A and the lower sure-thing principle at A{ both hold, or the upper sure-thing

principle at A{ and the lower sure-thing principle at A both hold.

Under PACE utility, preferences must satisfy the outer sure-thing principle at K.

That is, the sure-thing principle holds for likely outcomes and unlikely outcomes.

The third class, moderate likelihood, is covered by the following condition:

Definition 9 (Inner Sure-Thing Principle at A): For A ∈ E , with A <L A{,

the implication:

fBg < fBh ⇒ f̃Bg < f̃Bh

holds if A <L R(B, j) <L A{, for all j = fBg, fBh, f̃Bg, f̃Bh.

The inner sure-thing principle applies to events with ranks of moderate likelihood.

Under PACE utility, the inner sure-thing principle at K necessarily holds, where K

and K{ are labelled so that K <L K{. In probability terms this amounts to expected

utility when the outcomes are ranked with probability in the “inner” interval [1−κ, κ].

The outer sure-thing principle refers to the “outer” intervals [0, 1− κ] and [κ, 1].

The key axiom for PACE utility can now be stated:

Axiom 5κ (The Piecewise-Sure-Thing Principle): For all A ∈ E , at least one

of the inner sure-thing principle at A or the outer sure-thing principle at A holds.

The piecewise-sure-thing principle takes the content of the above conditions, then

adds a simplifying assumption. It forces every event to fall into at least one of
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three categories: a set of events where the upper sure-thing principle holds, a set of

events where the lower sure-thing principle holds, or a set of events where the inner

sure-thing principle holds. The following theorem characterises PACE utility:

Theorem 4.1. Let solvability hold. Then, the following statements are equivalent:

1. The preference relation < satisfies axioms 1, 2, 3, 4 and 5κ (weak order, mono-

tonicity, Archimedeanity, comparative likelihood consistency, and the piecewise-

sure-thing principle).

2. There exists a convex-valued, piecewise-additive capacity νκ over E and a real-

valued, strictly <-increasing utility function u over outcomes X such that <

is represented by E(νκ, u). That is, PACE utility holds.

In statement 2, the capacity is unique and utility is cardinal.

5 Closing Comments

This paper has presented a simple way of integrating optimism and pessimism into

subjective expected utility. To get PACE utility, ‘kinks’ were incorporated into

expected utility. In rough terms, approximating ‘inverse-S’ with a ‘Z’. An intuitive

weakening of the sure-thing principle called the piecewise-sure-thing principle was

introduced. Theorem 4.1 provided a behavioural foundation for PACE utility.

Chateauneuf et al. (2007) have shown how NEO-expected utility can be applied to

resolve well-known phenomena that are difficult to reconcile with expected utility,

such as the coexistence of gambling and insurance and the equity premium puzzle.

Since, for finite state spaces, NEO-expected utility is obtained as a special case,

PACE utility can generate the same results. In applications with rich state spaces,

PACE utility is a more tractable alternative.
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A Appendix

A.1 General Results on Additive Separability

The proof of Theorem 4.1 uses the general results of Wakker (1991) so the main

result of that paper is repeated here. We restrict attention to the case of three or

more coordinates here, although Wakker (1991) allows for two coordinates.

Let Y be a non-empty set of outcomes, and <′ a weak order on Y . Any n-tuple

y = (y1, . . . , yn) ∈ Y n is called a rank-ordered alternative if y1 <′ · · · <′ yn. The set

of rank-ordered alternatives is Y n
<′ . An outcome y is minimal if y �′ x for no x ∈ Y

and is maximal if x �′ y for no x ∈ Y . An extreme alternative y has its first (so
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every) coordinate a minimal outcome, or its last (so every) coordinate a maximal

outcome.

A weak order < is defined on Y ⊆ Y n
<′ , a subset of the rank-ordered alterna-

tives. A constant alternative (α, . . . , α) is identified with the outcome α ∈ Y .

It is therefore ensured that < and <′ are in agreement in the following sense:

(α, . . . , α) � (β, . . . , β)⇒ α �′ β, and (α, . . . , α) ∼ (β, . . . , β)⇒ α ∼′ β.

We write αiy for the alternative y ∈ Y with coordinate yi replaced by α. Replac-

ing more than one coordinate of y the notation αiβjy is clear. Replacing a set

of coordinates I ⊆ {1, . . . , n} write αIy. Solvability holds if, for all alternatives

αiz,y, γiz ∈ Y with αiz � y � γiz there is an outcome β such that βiz ∼ y.

An order is monotonic if the following equivalence holds: α < β ⇔ αiy < βiy

for all αiy, βiy ∈ Y . The order is coordinate independent if the following holds:

αiy < αiz⇔ βiy < βiz when all the alternatives are in Y .

Call a sequence α1, α2, . . . a standard sequence if, for some j ∈ {1, . . . , n}, α1
jy � α1

jz

and αkjy ∼ αk+1
j z for k = 1, 2, . . .. Standard sequences could be finite or infinite. A

standard sequence α1, α2, . . . is bounded if for all k there exist outcomes β, γ such

that (β, . . . , β) < (αk, . . . , αk) < (γ, . . . , γ) and there are alternatives y, z ∈ Y with

yi = β and zi = γ. An order is Archimedean if every bounded standard sequence is

finite.

The extended reals is R := R ∪ {−∞,∞}. A preference relation < on Y has an

extended additive representation if: there are functions V1, . . . , Vn so that
∑n

j=1 Vj :

Y → R represents < on Y . To characterise those orders for which an extended

additive representation exists, Wakker (1991) offered the following theorem:

Theorem A.1.1 (Wakker, 1991). Let Y be a non-empty set, and < a preference

relation on a set Y ⊆ Y n
r (n > 3) of rank-ordered alternatives, where rank-ordering

is with respect to the weak order <′ on Y agreeing with the binary relation < on Y

restricted to constant alternatives. Let < satisfy solvability on Y . The following two

statements are equivalent:
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1. The preference relation < on Y is an Archimedean, monotonic, weak order

satisfying coordinate independence.

2. The preference relation < on Y is represented by an extended additive function

that is real-valued for all non-extreme alternatives.

y < z ⇔
n∑
i=1

Vi(yi) >
n∑
i=1

Vi(zi)

Further, the additive representation is an interval scale on Y \ {extremes} unless <

on Y has exactly two equivalence classes and n > 3.

A.2 Proof of Theorem 4.1

If preferences are represented by PACE utility, with a convex-valued capacity, one

can verify weak order, the piecewise-sure-thing principle, monotonicity, comparative

likelihood consistency and Archimedeanity by substitution of the preference func-

tional. Hence, we assume statement 1 of the theorem and derive statement 2. For

finite X ⊆ X , the set of acts with outcomes only in X is written AX . Enumerate

the outcomes in X to be increasing in terms of preference: X = {x0, . . . , xn} with

x0 ≺ · · · ≺ xn. For f ∈ AX the decumulative representation, written F as follows:

F = (F1, . . . , Fn) where Fi =
⋃
xj<xi

f−1(xj)

so each Fi is the union of all events for which the act f yields xi or any other

preferred outcome. Clearly, Fn = f−1(xn) for all f ∈ A as no outcome in X is

preferred to xn. Also, one would find F0 = S for all acts. Therefore, we drop the F0

from the notation and write F = (F1, . . . , Fn). No relevant information is lost when

transforming an act to its decumulative representation, that is, F = G iff f = g.

The set of all decumulative acts is A ∗. The preference relation < over A naturally
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induces a preference relation over A ∗, that we also write <. As we proceed we will

refer to elements of A ∗
X as F, F ′, G,G′ and so on without referring to the underlying

acts f, f ′, g, g′ unless necessary.

Comparative likelihood consistency, axiom 4, affects the decision maker’s preferences

for acts with, at most, three possible outcomes. For X with |X| = 3, preferences

over AX satisfy the axioms of Theorem 4.1.4 (and Corollary 4.1.4) of Gilboa (1987).

Hence, preferences admit a Choquet expected utility representation on AX , with

utility uX and convex-valued capacity νX . The utility is cardinal and the capacity is

unique.

Let L denote the set of events A for which <L satisfies the lower sure-thing principle

at A, let U denote the set of events A for which <L satisfies the upper sure-thing

principle at A, and let M denote the set of events A for which <L satisfies the inner

sure-thing principle at A. By the piecewise-sure-thing principle, every event belongs

to at least one of U ,M or L .

An order satisfies Z -cancellation if the following holds:

[A,B,A∪C,B∪C ∈ Z , A∩C = B∩C = ∅, AiF < BiG]⇒ (A∪C)iF < (B∪C)iG

An order satisfies K -cancellation if it satisfies Z -cancellation for Z ∈ {U ,M ,L }.

Lemma A.2.1. Preferences < over A ∗ satisfy K -cancellation.

Proof. The details for U -cancellation are given, the other conditions follow similar

reasoning. Let i > 1. Let h and h̃ be the acts associated with decumulative acts AiF

and BiG. Define E := h−1(xi−1) and Ẽ := h̃−1(xi−1). Suppose that, for C ∈ E with

A∩C = B∩C = ∅, the decumulative acts (A∪C)iF and (B∪C)iG are well defined.

Then it must be8 that E ⊇ C and Ẽ ⊇ C. So, both acts coincide on the event C

(with outcome xi−1). By assumption, R(h−1(xi), h) <L K and R(h̃−1(xi), h̃) <L K,

so R(E, h) = Fi−1 <L K and R(Ẽ, h̃) = Gi−1 <L K. By the upper sure-thing

8Because such acts are obtained from h and h̃ by replacing xi−1 with xi on C.
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principle at K, we may replace xi−1 with xi on an event C ⊂ E, without reversing

the expressed preference:

xiCxi−1E\Cf < xiCxi−1E\Cg.

The map that transforms these acts to their decumulative representation is as follows:

xiCxi−1E\Cf 7→ (F1, . . . , Fi−1, A∪C,Fi+1, . . . Fn) and xiCxi−1E\Cg 7→ (G1, . . . , Gi−1, B∪
C,Gi+1, . . . , Gn), as required.

A capacity ν is Z -modular if the following holds:

[A,B,A∪C,B∪C ∈ Z , A∩C = B∩C = ∅]⇒ ν(A∪C)−ν(A) = ν(B∪C)−ν(B).

The capacity is K -modular if it is Z -modular for Z ∈ {U ,M ,L }. The following

lemma establishes the K -modularity of the νX obtained above.

Lemma A.2.2. The capacity νX is K -modular.

Proof. Let X = {x0, x1, x2} be enumerated in increasing order of preference: x0 ≺
x1 ≺ x2. We prove that νX is U -modular. The remaining conditions are entirely

similar. In the decumulative framework, an act f translates to (A,E), where E =

f−1(x2) and A = E ∪ f−1(x1). Take any A,B,C such that A ∩ C = B ∩ C = ∅
and A,B,A ∪ C,B ∪ C ∈ U . Let νX(A) > νX(B). We require: νX(A ∪ C) −
νX(A) = νX(B ∪ C)− νX(B). Without loss of generality, we fix uX(x0) = 0. Define

d := [νX(A)− νX(B)]uX(x1) > 0 and e := νX(B)[uX(x2)−uX(x1)]. We separate the

proof of step 1 into two cases.

Case 1: d 6 e. We know νX(A)uX(x1) > νX(B)uX(x1). This holds if and only

if, (A, ∅) < (B, ∅). Also, d 6 e if and only if νX(A)uX(x1) 6 νX(B)uX(x1) +

νX(B)[uX(x2) − uX(x1)], equivalent to (A, ∅) 4 (B,B). Appealing to convex-

valuedness of the νX functions, there exists an E (which could be ∅) such that

(A, ∅) ∼ (B,E). Furthermore, by K -cancellation (Lemma A.2.1) applied twice, the
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above indifference holds only if (A ∪ C, ∅) ∼ (B ∪ C,E). Substituting the additive

representation for these two indifferences yields:

νX(A)uX(x1) = νX(B)uX(x1) + νX(E)[uX(x2)− uX(x1)],

and

νX(A ∪ C)uX(x1) = νX(B ∪ C)uX(x1) + νX(E)[uX(x2)− uX(x1)],

which jointly imply: νX(A) − νX(B) = νX(A ∪ C) − νX(B ∪ C). Hence, νX is

U -modular.

Case 2: d > e. This is the more difficult case, in that the proof is indirect. We

reduce the proof to case 1 holding for some other, appropriately constructed, Ã, B̃.

We now have, d > e, or: νX(A)uX(x1) > νX(B)uX(x1) + νX(B)[uX(x2) − uX(x1)].

Equivalently, (A, ∅) � (B,B) < (B, ∅), the second preference being implied by

monotonicity. By convex-valuedness, there exists Z ∈ E with A <L Z <L B such

that (Z, ∅) ∼ (B,B). Let Y be defined so that A \ Y = Z. So, (A \ Y, ∅) ∼
(B,B). One can verify that B ∪ Y and B ∪ Y ∪ C are in U . By K -cancellation,

(A \ Y ∪ C, ∅) ∼ (B ∪ C,B). Again, by K -cancellation, (A, ∅) ∼ (B ∪ Y,B). And,

again, by K -cancellation, (A ∪ C, ∅) ∼ (B ∪ Y ∪ C,B). Substituting the Choquet

expected utility representation for each of these four indifferences, subtracting the

obtained equations from each other and cancelling the common utility terms, the

following equations can be established:

νX(A)− νX(B) = νX(B ∪ Y )− νX(A \ Y ),

and,

νX(A ∪ C)− νX(B ∪ C) = νX(B ∪ Y ∪ C)− νX(A \ Y ∪ C).

Hence, given the last two equations, we can establish the U -modularity property

for the chosen A,B,C only if the U -modularity property can be established using

Ã, B̃, C with Ã = A \ Y and B̃ = B ∪ Y . Define d̃ and ẽ in the same manner as
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d and e, but using Ã and B̃ where A and B were used. Then, it is immediate that

d̃ = e and ẽ > e, hence case 1 holds (d̃ 6 ẽ) and U -modularity is proved.

The following lemma contains an implication of the piecewise-sure-thing principle.

This lemma is crucial in deriving the “kinks” endogenously. By the piecewise-sure-

thing principle, every event belongs to at least one of U ,M or L . It is apparent

from the definitions that A ∈ U and B <L A only if B ∈ U . Also, by the piecewise-

sure-thing principle, A{ ∈ L and, then, B{ ∈ L and also C 4L A only if C ∈ L .

Suppose there exist A ∈ L and B ∈ U with A �L B (U and L “overlap”). Then,

νX is modular within U and L , hence also in their intersection, so νX must be

modular globally. Then νX is additive, hence the following holds:

Lemma A.2.3. There exist A ∈ L and B ∈ U with A �L B (U and L “overlap”)

if and only if the sure-thing principle holds.

To avoid repeatedly adding “if expected utility does not hold” qualifiers to everything

that follows, we assume for the remainder of the paper that preferences are non-

expected utility unless otherwise stated. Equivalently, we assume, U , M and L do

not overlap. Let K be the <L-infimum of U . It must be that K <L K{, or else U

and L would overlap. K is the <L-supremum of M , K{ is the <L-supremum of L ,

and K{ is the <L-infimum of M . Clearly, the inner and outer sure-thing principles

at K hold. The same holds for J ∈ E if and only if J ∼L K.

We now let X be finite and have at least four outcomes. The following lemma

establishes coordinate independence for decumulative acts:

Lemma A.2.4. Preferences < over A ∗ are coordinate independent.

Proof. We show that, for all FiG,FiH, F̃iG, F̃iH ∈ A ∗
X , FiG < FiH only if F̃iG <

F̃iH. Let F̃i = Fi ∪ A for some A with A ∩ Fi = ∅, so that F̃i <L Fi. Then, there

are six cases to consider:
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i. {F̃i <L Fi <L K}. FiG < FiH only if F̃iG < F̃iH by U -cancellation. ii.

{F̃i <L K <L Fi <L K{}. FiG < FiH only if KiG < KiH by M -cancellation. Then,

KiG < KiH only if F̃iG < F̃iH by U -cancellation. iii. {F̃i <L K <L K{ <L Fi}.
FiG < FiH only if K{iG < K{iH by L -cancellation. Then, K{iG < K{iH only if

KiG < KiH by M -cancellation. Finally, KiG < KiH only if F̃iG < F̃iH by U -

cancellation. iv. {K <L F̃i <L Fi <L K{}. FiG < FiH only if F̃iG < F̃iH by

M -cancellation. v. {K <L F̃i <L K{ <L Fi}. FiG < FiH only if K{iG < K{iH

by L -cancellation. Then, K{iG < K{iH only if F̃iG < F̃iH by M -cancellation. vi.

{K{ <L F̃i <L Fi}. FiG < FiH only if F̃iG < F̃iH by L -cancellation.

By construction, A ∗ is the rank-ordered set S n
⊇ with n > 3. The preference relation

< restricted to constant acts agrees with ⊇. Weak ordering of < on A ∗ is inherited

from the same property on A . Lemmas B.1 and B.3 of Abdellaoui and Wakker

(2005: 44-45) ensure that monotonicity and solvability in the decumulative frame-

work hold. Lemma A.2.4 established the coordinate independence of < on A ∗. Our

Archimedean axiom (A5) translates to the following: bounded standard sequences

on coordinate i, that is A1
iF � A1

iG and AkiF ∼ Ak+1
i G for k = 1, 2, . . ., are finite for

i = 1, . . . , n. That is, preferences over A ∗ are Archimedean in the sense of Wakker

(1991). We now invoke Theorem A.1.1, so there exist functions V1, . . . , Vn such that∑n
j=1 Vj represents < on A ∗. Each Vj is real-valued, for j = 2, . . . , n − 1. It is

possible that V1(∅) = −∞ and/or Vn(S ) = +∞. But, < has a real-valued, additive

representation on A ∗ \ {extremes}.

Choquet expected utility holds over AX with |X| = 3. We now extend this to

arbitrary, finite X by a routine argument appealing to uniqueness properties on

overlapping outcome subsets. To see this, consider the four-outcome case, X =

{x0, x1, x2, x3}. We know preferences over decumulative acts A ∗
X are represented by

V1 + V2 + V3. Let Y = {x0, x1, x3} and Z = {x0, x2, x3}. We then obtain Choquet

expected utility representations with utilities uY , uZ and capacities νY , νZ . Rescale

these functions so that uY (x3) = uZ(x3) = 1 and uY (x0) = uZ(x0) = 0. Rescale

the additive representation so that Vj(∅) = 0 for j = 1, 2, 3 and
∑3

j=1 Vj(S ) = 1.
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Since
∑

j Vj represents preferences when restricted to A ∗
Y and A ∗

Z , we have Vj(·) =

νY (·)[uY (xj)− uY (xj−1)] = νZ(·)[uZ(xj)− uZ(xj−1)] for j = 1, 2, 3. So, νY = νZ and

then uY = uZ . Let ν = νY and define u so that u|Y = uY and u|Z = uZ . Then,

Choquet expected utility with utility u and capacity ν represents preferences over

AX . In the same manner, Choquet expected utility on AX can be obtained for all

finite X. We now extend this to preferences < over A , the set of simple acts over X .

If X has finitely many equivalence classes under ∼ then, passing to the quotient,

the proof above applies. If X has infinitely many equivalence classes under ∼, the

representation can be obtained as in Abdellaoui and Wakker (2005, p60-61).

The capacity ν is ordinally additive if the following holds:

[A,B,A∪C,B ∪C ∈ E , A∩C = B ∩C = ∅, ν(A) < ν(B)]⇒ ν(A∪C) < ν(B ∪C).

Notice that ordinal additivity concerns events within and across the K sets, over all

of E . The following lemma establishes the ordinal additivity of ν.

Lemma A.2.5. The capacity ν is ordinally additive.

Proof. Let A,B,C satisfy the prerequisite conditions of the ordinally additive impli-

cation. If A,B,A ∪ C,B ∪ C ∈ Z for some Z ∈ {U ,M ,L } then the implication

follows from K -cancellation established in Lemma A.2.1. There are various cases to

consider, although the proofs are sufficiently similar to fully explain the proof when

A ∈ M and A ∪ C,B,B ∪ C ∈ U . Then, ν(A) 6 ν(K) 6 ν(B), with at least one

inequality strict, so we take ν(A) < ν(K). There exists, by convex-valuedness, E

such that ν(A∪ (C \E)) = ν(K). Then, by U -modularity and the capacity’s mono-

tonicity, ν(A∪(C \E)∪E) = ν(A∪C) 6 ν(B∪E) 6 ν(B∪E∪(C \E)) = ν(B∪C),

as required.

Lemma A.2.1 can be amended now, <L satisfies cancellation, so it is a qualitative

probability order (Savage, 1954: 32). We now show that <L is a quantitative proba-

bility order. That is, for all A,B ∈ E , with A �L B, there exists a finite partition
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{C1, . . . , Cn} of S such that A �L B ∪ Ci for all i = 1, . . . , n. Savage (1954)

showed that any quantitative probability order may be represented by a convex-

valued, finitely additive probability measure, with such a probability uniquely deter-

mined (see also Krantz, Luce, Suppes and Tversky, 1971: 202-208). In showing that

<L is a quantitative probability, we prove:9

Lemma A.2.6. There exists a convex-valued and finitely-additive probability mea-

sure p on E and a real-valued, strictly increasing function φ : [0, 1]→ [0, 1] such that

ν = φ ◦ p. Such φ and p are unique.

Proof. Let A �L B. We show there exists a finite partition {C1, . . . , Cn} of S such

that A �L B ∪ Ci for all i = 1, . . . , n. The order <L is tight if A ∪ C <L B for all

disjoint C �L ∅ and B ∪D <L A for all disjoint D �L ∅ jointly imply A ∼L B. The

order is fine if, for all A �L ∅, there exists a finite partition {C1, . . . , Cn} of S such

that A �L Ci for all i = 1, . . . , n. An equivalent formulation, due to Theorem 4 of

Savage (1954: 38), of the finite partition condition is that <L is fine and tight. If

A �L B, then the existence of disjoint C such that A � B ∪ C can be established

using convex-valuedness of ν. Then, A∪C <L B for all disjoint C �L ∅ with A �L B
is excluded and <L is tight.

Lemma C.3 of Abdellaoui and Wakker (2005) guarantees, for all ε > 0, the existence

of a partition {C1, . . . , Cn} of S such that ν(
⋃n
j=iCj) − ν(

⋃n
j=i−1Cj) < ε for all

i = 1, . . . , n.10 To show <L is fine, let A �L ∅, choose ε < min{ν(A), ν(K
{)

2
} and

take such a partition. Clearly ν(Cn) < ε. Given ν(Cn−1 ∪ Cn) − ν(Cn) < ε, exists

E ∈ E disjoint from Cn such that ν(Cn∪E) = ν(Cn) + ε < 2ε < ν(K{). By choosing

ε as stated, Cn ∪ E ∈ L , which includes ∅, and by L -modularity (equivalent to

additivity), ν(E) = ε. By ordinal additivity, ν(Cn−1 ∪ Cn) < ν(Cn ∪ E) holds only

if ν(Cn−1) < ν(E) = ε as required. Continuing in this way, ν(Ci) < ε holds for all

i = 1, . . . , n, and <L is fine.

9The same idea is used in Gilboa (1985) under more general conditions.
10Kopylov (2007) called probability measures with this property finely ranged.
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The capacity induces an order which satisfies the Savage axioms for a probability

representation, hence the capacity is a strictly increasing transformation of such a

probability measure. Uniqueness of p is given by Savage’s result. Uniqueness of φ

follows from that of ν.

Lemma A.2.7. The capacity ν is piecewise-additive.

Proof. According to lemma A.2.6, the capacity ν and the probability measure p

obtained above both represent <l, the likelihood order over E . By additivity, p(A ∪
B)− p(B) = p(A) for all A,B with A ∩B = ∅, hence p is K -modular.

Let Z ∈ {U ,M ,L } and take A,B,C,D,A∪D,B∪C ∈ Z with A∩D = B∩C = ∅.
We show p(A)−p(B) = p(C)−p(D) if and only if ν(A)−ν(B) = ν(C)−ν(D). Assume

the first equation holds and, without loss of generality, that p(B) < p(A) < p(C).

Then, there exists E such that p(A ∪ E) = p(C), so p(D) = (B ∪ E) by K -

modularity, so ν(D) = ν(B∪E). There also exists Ẽ such that p(A) = p(B∪ Ẽ) and

B∩Ẽ = E∩Ẽ = ∅. By K -modularity of ν: ν(B∪Ẽ)−ν(B) = ν(B∪Ẽ∪E)−ν(B∪E),

which is equivalent to ν(A)− ν(B) = ν(C)− ν(D). As solvability holds, the Z sets

are sufficiently rich to ensure that ν and p are affinely related. It is readily verified,

for example, that the conditions of Theorem 4.2 of Krantz, Luce, Suppes and Tversky

(1971) hold.11 Then, there are a0, a1, a3, b1, b2 ∈ R such that:

φ(A) =


a0p(A) if A ∈ L

a1p(A) + b1 if A ∈M

a2p(A) + b2 if A ∈ U

with a1, a2, a3 > 0, and b1, b2 ∈ R such that monotonicity and normalisation hold.

We have already shown the following:

U := {A ∈ E : A <L K}, M := {A ∈ E : K <L A <L K{}, L := {A ∈ E : K{ <L A}.
11To see this, define an order <∗ over Z ×Z such that (A,B) <∗ (C,D) if and only if p(A) −

p(B) > p(C)− p(D). Conditions 1-5 of definition 4.1 of KLST are routinely confirmed.
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Define κ := p(K). Because L and M share a common element K{, for ν to be

well-defined we must have a0(1− κ) = a1(1− κ) + b1. Similarly, because U and M

share a common element K, for ν to be well-defined we must have a1κ+b1 = a2κ+b2.

Now uniquely define γ and δ such that γ = 1 + a1 + b1 and δ = b1, and we are done.

It is now apparent that preferences < over A are represented by Choquet expected

utility with capacity ν, with piecewise-additive. That is, PACE utility holds on A .

�

A.3 Further Comments on Theorem 4.1

Theorem 4.1 characterises a special case of Choquet expected utility, with a convex-

valued (solvable) capacity. Applying Theorem 6 of Wakker (1996) gives the following

observation:

Observation A.3.1. If, in statement 1 of Theorem 4.1, the piecewise-sure-thing

principle (axiom 5κ) is replaced with the sure-thing principle (axiom 5), then the

capacity obtained in statement 2 is additive (subjective expected utility holds).

Consider the following weakening of the sure-thing principle:

Axiom 6 (The Rank-Dependent Sure-Thing Principle): For all outcomes

x, y ∈X and acts g, h ∈ A , the implication:

xAg < xAh ⇒ yAg < yAh

holds whenever R(A, xAg) = R(A, xAh) = R(A, yAg) = R(A, yAh).

The rank-dependent sure-thing principle asserts that the sure-thing principle holds

whenever the common outcomes have common ranks and are changed in a way

that preserves the ranks. By a direct translation of the above definition, it can
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be shown that the rank-dependent sure-thing principle for preferences over acts is

equivalent to the coordinate independence condition for preferences over acts in their

decumulative representation. Therefore, Lemma A.2.4 in Appendix A.2, has shown

that the rank-dependent sure-thing principle can be derived from axioms 1-4 and

5κ. Following that Lemma, as part of the proof of Theorem 4.1, a Choquet expected

utility representation was proved for preferences satisfying axioms 1-4 over acts, and

satisfying coordinate independence for acts in their decumulative representation.

Hence the following observation is proved:

Observation A.3.2. If, in statement 1 of Theorem 4.1, the piecewise-sure-thing

principle (axiom 5κ) is replaced with the rank-dependent sure-thing principle (axiom

6), then Choquet expected utility with a convex-valued capacity holds in statement 2.

In the representation obtained in Theorem 4.1, the capacity is a probability trans-

formation: νκ = φ◦p with φ strictly increasing and continuous. As in Savage (1954),

however, the probability measure p is not, in general, countably additive.12 Under

solvability, the power set of S is too large a set of events to derive a convex-valued,

countably additive probability measure. One must restrict E to be some other, suf-

ficiently small, σ-algebra. Having done so, one may apply the monotone continuity

axiom:

Axiom 7 (Monotone Continuity): Given acts f, g ∈ A with f � g, outcome

x ∈ X , and countable collection of events E1, E2, . . ., with E1 ⊇ E2 ⊇ · · · , and

∩∞i=1Ei = ∅, there exists j > 1 such that xEj
f � g and f � xEj

g.

Following Villegas (1964), Arrow (1970) introduced monotone continuity in order

derive subjective expected utility with a countably additive probability measure.

The same axiom was used by Chateauneuf, Maccheroni, Marinacci and Tallon (2005)

to characterise countable additivity of all probability measures in a set of priors

associated with a multiple priors representation. Machina and Schmeidler (1995:771)

12A probability measure p is countably additive if, for all countable collections of disjoint events
A1, A2, . . ., we have p(∪∞i=1Ai) =

∑∞
i=1 p(Ai).
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also noted that this axiom would lead to countable additivity of their probabilistic

sophistication model. PACE utility is a special case of probabilistic sophistication,

and collapses to expected utility in the two-outcome case, hence we note the following:

Observation A.3.3. If, in statement 1 of Theorem 4.1, the set of events E is re-

stricted to be a sufficiently small σ-algebra, the set of acts A is restricted to those

acts measurable with respect to the restricted set of events, the axioms in statement

1 hold on this restricted set of acts, and the monotone continuity axiom is further

assumed, then the capacity obtained in statement 2 is a strictly increasing and con-

tinuous transformation of a convex-valued, countably additive probability measure.
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